# Failure Modes of Simple Pressure Vessles 

Roger Cortesi, SM Mechanical Engineering MIT
rcortesi@alum.mit.edu http://www.rogercortesi.com/

## 21 JUN 02

$$
\mathrm{MPa}:=1 \cdot 10^{6} \mathrm{~Pa} \quad \mathrm{GPa}:=1 \cdot 10^{9} \mathrm{~Pa}
$$

$\rho:=1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{D} 2 \mathrm{P}($ depth $):=\rho \cdot \mathrm{g} \cdot$ depth $\quad$ This fucntion converts a depth to Pressure

$$
\begin{array}{ll}
\mathrm{E}:=190 \mathrm{GPa} & \text { Youngs Modulus } \\
\mathrm{Y}:=205 \mathrm{MPa} & \text { Yield Stress } \\
\mathrm{v}:=0.33 & \text { Poisson's Ratio }
\end{array}
$$

THESE MATERIAL VALUES ARE FOR 302/304/316 STAINLESS STEEL

This function returns the Thickness to Diameter (outer) ratio of a cylinder that will cause yielding at the inner surface for a given pressure. To prevent yielding the T/D shoud be larger than this value. (Roark, p638 Table 32 Formula's for thick walled pressure vessel case 1c).
$\mathrm{TD}_{\text {buckle }}($ press $):=\left[\text { press } \cdot\left(\frac{1-\mathrm{v}^{2}}{2 \cdot \mathrm{E}}\right)\right]^{\frac{1}{3}}$

This function returns the Thickness to Diameter (outer) ratio of a cylinder for buckling. To prevent buckling T/D should be larger than this value.


Above is the composite curve for above material. To prevent failure value to Thickness/Diameter (Outer) should be greater than both those shown here for a given depth.

## End Plate Failure Modes



This fuction calculates the Thickness to Diameter (INNER) ratio for an endplate simply supported around its edge that will cause yield failure for a given pressure applied to one side. (Roark pp428 Table 24 Formulas for flat circular plates of constant thickness Case 10a)

To prevent failure by yielding the Thickness/Diameter (inner) ratio should be geater than that shown above. Note: This curve is for a simply supported endplate. If the edges are clamped case 10b of Table 24 in roark should be used.

## References:

Woods Hole Oceanographic Institute Technical Memorandum 3-81
Failure Curves of Cylindrical/Spherical Pressure Vessels and Flat End Caps.
By Arnold G. Sharp, August 1981
Roark's Formulas for Stress and Strain, 6th Edition
By Warren C. Young 1989 McGraw-Hill

## Mark's Standard Handbook for Mechanical Enineers, pp6-36

